KAIST N-pad : Neighboring Pixel-based Industrial Anomaly Detection
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distributions based on similarity between target and * Two nominal distributions are estimated by applying the similarity between the target pixel .
neighboring pixels and channel selection and its neighboring pixels as weights (A) and by aggregating features of its neighborhood (B) Ground Truth rabiM PatchCore ours Cround Tuth PaDil Patchcore
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selection sampling Patch-level * Image shifting is employed for subjecting multiple images to anomaly score calculation
based on the Mahalanobis distance (D)
Pixel wise AUC 98.11 98.42 98.45

State-of-the-art Performance

* Method: proposes novel method of identifying anomaly by
incorporating two nominal distributions estimated on patch

* N-pad outperforms benchmark models on MVTec-AD dataset
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* Experiments: achieved state-of-the-art (SOTA) performance wise
in multiple industrial anomaly detection datasets composed of PRO-
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